PhD Preliminary Written Exam
Spring 2015

Problem 1
Communication Solutions

- No book, notes, mobile phones or laptop are allowed in the exam. You can use calculator if needed.
- This exam has two problems:
- Problem 1 has six parts, and is worth 25 points.
- Problem 2 has three parts, and is worth 15 points.
- The total number of points (perfect score) is 40 .

Problem 1) We have a wireless communication channel, in which the transmitter can send two symbols $x_{1}[n]$ and $x_{2}[n]$ at each time instance n, and the received signal is

$$
y[n]=h_{1} x_{1}[n]+h_{2} x_{2}[n]+z[n],
$$

where $z[n]$ is an additive white Gaussian noise, with $z[n] \sim \mathcal{N}\left(\mu=0, \sigma^{2}=100\right)$. We can send symbols $x_{i}[n] \in\{-1,+1\}$ for $i=1,2$ over this channel.
(a) Assume the transmitter uses the same symbol for both x_{1} and x_{2}, i.e., $x_{1}[n]=x_{2}[n]$ (we refer to this scheme as scheme-1). Find the signal-to-noise ratio (SNR) for detecting s at the receiver. [3 points]
(b) Now, consider scheme-2 as follows: in order to communicate two symbols s_{1} and s_{2}, the transmitter sends

$$
\begin{array}{ll}
x_{1}[1]=s_{1}, & x_{2}[1]=s_{2}, \\
x_{1}[2]=s_{2}, & x_{2}[2]=-s_{1},
\end{array}
$$

in two time instances. Combine $y[1]$ and $y[2]$ so that s_{2} gets eliminated, and find s_{1}.
(c) What is the SNR of this detection rule for decoding s_{1} ?
(d) Repeat parts (b) and (c) for s_{2}.
(e) Which one of scheme-1 or scheme-2 do you recommend in order to get a better SNR? (your answer may depend on values of h_{1} and h_{2})
[4 points]
(f) Now assume h_{1} and h_{2} are two independent random variables, each distributed as

$$
P_{h_{1}}(x)=P_{h_{2}}(x)= \begin{cases}0.2 & x=-10 \\ 0.3 & x=-1 \\ 0.3 & x=1 \\ 0.2 & x=10 \\ 0 & \text { otherwise }\end{cases}
$$

Hence SNR will be also a random variable for both schemes. Find the probability that the (random) SNR is at least $1(\mathrm{SNR} \geq 1)$ for each of scheme-1 and scheme- 2 .
[7 points]

Solution:

(a) By using the same symbol for both $x_{1}[n]$ and $x_{2}[n]$, we have

$$
y[n]=h_{1} s+h_{2} s+z[n]=\left(h_{1}+h_{2}\right) s+z[n]
$$

The signal power is

$$
\mathbb{E}\left[\left(\left(h_{1}+h_{2}\right) s\right)^{2}\right]=\left(h_{1}+h_{2}\right)^{2} \mathbb{E}\left[s^{2}\right]=\left(h_{1}+h_{2}\right)^{2}
$$

while the noise power is $\mathbb{E}\left[(z[n])^{2}\right]=100$. Hence, SNR of scheme- 1 is given by

$$
\mathrm{SNR}_{1}=\frac{\mathbb{E}\left[\left(\left(h_{1}+h_{2}\right) s\right)^{2}\right]}{\mathbb{E}\left[(z[n])^{2}\right]}=\frac{\left(h_{1}+h_{2}\right)^{2}}{100}
$$

(b) In scheme-2 we have

$$
\begin{aligned}
& y[1]=h_{1} s_{1}+h_{2} s_{2}+z[1] \\
& y[2]=h_{1} s_{2}-h_{2} s_{1}+z[2]
\end{aligned}
$$

In order to eliminate s_{2}, we can multiply $y[1]$ and $y[2]$ by h_{1} and $-h_{2}$, respectively, and add them up:

$$
\begin{aligned}
\tilde{y}_{1} & =h_{1} y[1]-h_{2} y[2]=h_{1}\left(h_{1} s_{1}+h_{2} s_{2}+z[1]\right)-h_{2}\left(h_{1} s_{2}-h_{2} s_{1}+z[2]\right) \\
& =\left(h_{1}^{2}+h_{2}^{2}\right) s_{1}+\left(h_{1} z[1]-h_{2} z[2]\right)
\end{aligned}
$$

(c) The resulting SNR for scheme-2 is given by

$$
\text { signal power }=\mathbb{E}\left[\left(\left(h_{1}^{2}+h_{2}^{2}\right) s_{1}\right)^{2}\right]=\left(h_{1}^{2}+h_{2}^{2}\right)^{2} \mathbb{E}\left[s_{1}^{2}\right]=\left(h_{1}^{2}+h_{2}^{2}\right)^{2}
$$

and
noise power $=\mathbb{E}\left[\left(h_{1} z[1]-h_{2} z[2]\right)^{2}\right]=h_{1}^{2} \mathbb{E}\left[(z[1])^{2}\right]+h_{2}^{2} \mathbb{E}\left[(z[2])^{2}\right]-2 h_{1} h_{2} \mathbb{E}[z[1] z[2]]=100\left(h_{1}^{2}+h_{2}^{2}\right)$.
Hence,

$$
\operatorname{SNR}_{2}\left(s_{1}\right)=\frac{\text { signal power }}{\text { noise power }}=\frac{\left(h_{1}^{2}+h_{2}^{2}\right)^{2}}{100\left(h_{1}^{2}+h_{2}^{2}\right)}=\frac{h_{1}^{2}+h_{2}^{2}}{100}
$$

(d) Decoding s_{2} from $y[1]$ and $y[2]$ is similar to s_{1}. We can first eliminate s_{1} by computing

$$
\begin{aligned}
\tilde{y}_{2} & =h_{2} y[1]+h_{1} y[2]=h_{2}\left(h_{1} s_{1}+h_{2} s_{2}+z[1]\right)+h_{1}\left(h_{1} s_{2}-h_{2} s_{1}+z[2]\right) \\
& =\left(h_{2}^{2}+h_{1}^{2}\right) s_{2}+\left(h_{2} z[1]+h_{1} z[2]\right) .
\end{aligned}
$$

The signal power is the same as that of s_{1}. For the noise power we have noise power $=\mathbb{E}\left[\left(h_{2} z[1]+h_{1} z[2]\right)^{2}\right]=h_{2}^{2} \mathbb{E}\left[(z[1])^{2}\right]+h_{1}^{2} \mathbb{E}\left[(z[2])^{2}\right]+2 h_{1} h_{2} \mathbb{E}[z[1] z[2]]=100\left(h_{1}^{2}+h_{2}^{2}\right)$.

Therefore,

$$
\operatorname{SNR}_{2}\left(s_{2}\right)=\frac{\text { signal power }}{\text { noise power }}=\frac{\left(h_{1}^{2}+h_{2}^{2}\right)^{2}}{100\left(h_{1}^{2}+h_{2}^{2}\right)}=\frac{h_{1}^{2}+h_{2}^{2}}{100}
$$

which is the same as $\operatorname{SNR}_{2}\left(s_{1}\right)$.
(e) Scheme-1 is better than scheme-2 only if $\mathrm{SNR}_{1} \geq \mathrm{SNR}_{2}$, that is

$$
\left(h_{1}+h_{2}\right)^{2} \geq h_{1}^{2}+h_{2}^{2}
$$

which holds if and only if $h_{1} h_{2} \geq 0$, which means h_{1} and h_{2} have the same sign.
(f) For scheme-1 we have SNR $_{1}=\left(h_{1}+h_{2}\right)^{2} / 100$. Hence a transmitted symbol would be detected only if $\left(h_{1}+h_{2}\right)^{2} \geq 100$. From distribution of h_{1} and h_{2}, we can see that

$h_{1}+h_{2}$	-20	-11	-9	-2	0	2	9	11	20
prob.	0.04	0.12	0.12	0.09	0.26	0.09	0.12	0.12	0.04

and hence,

$\left(h_{1}+h_{2}\right)^{2}$	0	4	81	121	400
prob.	0.26	0.18	0.24	0.24	0.08

Therefore, we have

$$
\mathbb{P}\left(\mathrm{SNR}_{1} \geq 1\right)=\mathbb{P}\left(\left(h_{1}+h_{2}\right)^{2} \geq 100\right)=0.24+0.08=0.32
$$

On the other hand, for scheme-2, the symbol can be successfully detected only if $\mathrm{SNR}_{2}=\left(h_{1}^{2}+\right.$ $\left.h_{2}^{2}\right) / 100 \geq 1$, which is equivalent to $h_{1}^{2}+h_{2}^{2} \geq 100$. The probability distribution of h_{1}^{2} and h_{2}^{2} is given by

h_{1}^{2}	1	100				
prob.	0.6	0.4	\quad	h_{2}^{2}	1	100
:---:	:---:	:---:				
prob.	0.6	0.4				

Hence,

$h_{1}^{2}+h_{2}^{2}$	2	101	200
prob.	0.36	0.48	0.16

Therefore,

$$
\mathbb{P}\left(\mathrm{SNR}_{2} \geq 1\right)=\mathbb{P}\left(h_{1}^{2}+h_{2}^{2} \geq 100\right)=0.48+0.16=0.64
$$

One can see that probability of successful detection in scheme-2 is much higher than that of scheme-1.

Problem 2) Consider a discrete communication channel modeled as

$$
y[n]=h[n] x[n]
$$

where $x[n] \in\{-1,+1\}$ is the channel input, and $h[n]$ is the random channel gain with

$$
h[n]=\left\{\begin{array}{rr}
0 & \text { with probability } 0.2 \\
1 & \text { with probability } 0.8
\end{array}\right.
$$

Moreover, $h[n]$ and $h\left[n^{\prime}\right]$ are independent from each other for $n \neq n^{\prime}$. We say a transmit symbol $x[n]$ is missed whenever the corresponding channel gain is zero $(h[n]=0)$.

We need to communicate an integer number m from the set $\mathcal{M}=\{0,1,2, \ldots, 255\}$, and we are only allowed to use the channel for ten times. To this end, we first map m to its 8 -digit binary expansion $s_{1} s_{2} s_{3} \cdots s_{8}$, and then send s_{1}, \ldots, s_{8} along with

$$
\begin{aligned}
& s_{o}=s_{1} \oplus s_{3} \oplus s_{5} \oplus s_{7} \\
& s_{e}=s_{2} \oplus s_{4} \oplus s_{6} \oplus s_{8}
\end{aligned}
$$

over the channel in ten time slots, using the mapping $0 \mapsto+1$ and $1 \mapsto-1$. For example if $m=97$ with binary representation 01100001 , we first find $s_{o}=0 \oplus 1 \oplus 0 \oplus 0=1$ and $s_{e}=1 \oplus 0 \oplus 0 \oplus 1=0$, and then transmit symbols $+1,-1,-1,+1,+1,+1,+1,-1,-1,+1$ over the channel corresponding to the bnary sequence 0110000110
(a) How many of the transmitted bits will be missed on average?
[2 points]
The receiver observes $Y=(y[1], y[2], \ldots, y[10])$, from which he wants to decode m. We say m can be decoded if we can determine all the bits in its binary expansion, i.e. $s_{1}, s_{2}, \ldots, s_{8}$. Otherwise the decoding process fails.
(b) When does this integer decoding process fail (find conditions under which we cannot find all the 8 desired bits)?
[7 points]
(c) Find the probability of failure in the decoding process.

Solution:

(a) Note that $y[n]=x[n]$ if $h[n]=1$. Otherwise, $y[n]=0$ regardless of $x[n]$ if $h[n]=0$. Hence, each bit will be received (not missed) if $h[n]=1$, which happens with probability 0.8 .
Let N be the number of channel uses in which $h[n]=1$. We have

$$
\mathbb{E}[N]=\mathbb{E}\left[\sum_{n=1}^{10} \mathbb{1}_{\{h[n]=1\}}\right]=\sum_{n=1}^{10} \mathbb{E}\left[\mathbb{1}_{\{h[n]=1\}}\right]=\sum_{n=1}^{10} \mathbb{P}[h[n]=1]=\sum_{n=1}^{10} 0.8=8
$$

(b) If none of the transmitted are missed then we can clearly decode m. Similarly, if only one of the transmitted symbols is missing we can still recover that by the help of s_{o} and s_{e}.
If three or more symbols are missing, then we definitely cannot recover s_{1}, \ldots, s_{8}.
If exactly two of the symbols are missing, then we may of may not be able to recover m. Let s_{i} and s_{j} be missing. We can distinguish the following cases:

$$
\begin{aligned}
i, j \in\{1,3,5,7, o\} & \Rightarrow \text { the missing bits cannot be recovered; } \\
i, j \in\{2,4,6,8, e\} & \Rightarrow \text { the missing bits cannot be recovered; } \\
i \in\{1,3,5,7, o\} \text { and } j \in\{2,4,6,8, e\} & \Rightarrow \text { the missing bits can be recovered; }
\end{aligned}
$$

(c) From part (b) we have

$$
\begin{aligned}
\mathbb{P}[\text { success }] & =\mathbb{P}[\text { no missing symbols }]+\mathbb{P}[1 \text { missing symbols }]+\mathbb{P}[i \in\{1,3,5,7, o\} \text { and } j \in\{2,4,6,8, e\}] \\
& =\binom{10}{0}(0.2)^{0}(0.8)^{10}+\binom{10}{1}(0.2)^{1}(0.8)^{9}+\left(\binom{5}{1}(0.2)^{1}(0.8)^{4}\right)\left(\binom{5}{1}(0.2)^{1}(0.8)^{4}\right) \\
& =(0.8)^{10}+10(0.2)(0.8)^{9}+25(0.2)^{2}(0.8)^{8}=0.5436
\end{aligned}
$$

